SOS Talk: Dynamic Connectivity on Forests with Link-Cut Trees

Daniel Graf

Setting: Object of study: Forest of rooted trees

Wanted: Queries:
- Connectivity \((u,v)\)?
- Are \(u\) and \(v\) in the same tree?

Updates:
- InsertEdge \((u,v)\) /where \(v\) is a root
- DeleteEdge \((u,v)\) /makes \(v\) the root of its tree

Goals: Small (amortized) runtime for all (and more) operations

Warmups:
- Incremental: union-find in \(O(\alpha(n))\) [Tarjan '75]
- Decremental: use component labels for \(O(1)\) queries
 - Upon delete, only relabel the smaller remaining tree
 - Find it with parallel BFS \(\rightarrow O(\log n)\) updates
 (with bit tricks in \(O(1)\)) [Evensh-Shiloach '75]

Link-Cut Trees (all in \(O(\log n)\) amortized) [Sleator; Tarjan '83]

Idea:
- Take an unbalanced tree
- Decompose it into disjoint paths
- Store end path in a balanced tree

Preferred Path Decomposition

<table>
<thead>
<tr>
<th>Preferred child of (v)</th>
<th>(stored implicitly)</th>
<th>(stored explicitly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w) if last access to (v) in its subtree</td>
<td>(v) if last access to (w) in subtree</td>
<td></td>
</tr>
<tr>
<td>(v)'s preferred root</td>
<td>(v)'s preferred root</td>
<td></td>
</tr>
<tr>
<td>some older path piece too</td>
<td>some older path piece too</td>
<td></td>
</tr>
</tbody>
</table>

Basic Operation (building block for all others)

access\((v)\) (make root-v-path preferred)

1. **splay \(v\)** (within its aux-tree)
2. Cut the preferred path below \(v\)
 - \(v\)'s right path.parent = \(v\)
 - \(v\)'s right parent = none
 - Go up the tree of aux trees until \(v\)'s path.parent = none
3. Splay \(w\)
4. Switch, \(w\)'s preferred child
5. Splay \(v\) (rotate)

Auxiliary Tree
- Represent each preferred path by a splay tree, keyed by depth
- Root of this aux.tree stores a pointer to the path's parent

<table>
<thead>
<tr>
<th>represent tree</th>
<th>tree of aux trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>access((v))</td>
<td>splay (v) (within its aux-tree)</td>
</tr>
<tr>
<td>splay (v) (within its aux-tree)</td>
<td>cut the preferred path below (v)</td>
</tr>
<tr>
<td>splay (w)</td>
<td>splay (v) (rotate)</td>
</tr>
</tbody>
</table>
| **switch, \(w\)'s preferred child** | **exit condition:** \(v\) is the root of the tree of aux trees.
"Standard" Operations

1. findroot(v)
 - access(v) // root-v-path preferred
 - walk left to find r // minimum of aux.tree
 - access(r) // so that it is fast next time

2. link(v, w)
 - access(v)
 - access(w)
 - v.left = w
 - w.parent = v

3. cut(v)
 - access(v)
 - v.left.parent = none
 - v.left = none

"Cool" Operations

4. path_aggregate(v)
 - access(v)
 - return v.value
 - subtree min/max sum aggregate within the aux.splay tree
 (modify access, link, cut accordingly)

5. reroot(v) / event(v) // reverse the direction of
 - all the edges on the root-v-path
 - swap (v.left, v.right)
 - flip lazy-reverse bit of v.right

Quick Analysis $O(\log^2 n)$ per operation

- #splays = #preferred child changes + m $\in O(m \log n)$
- #changes \leq #light pref.edges created + #heavy pref.edges deleted + (n-1)
- Heavy-light decomposition (useful tool for unbalanced trees)
 - (v.parent, v) is heavy if $\text{size}(v) > \frac{1}{2} \text{size}(v.parent)$ (w.r.t. represented tree)
 - light-depth(v) $\leq \log_2(n)$
- check the operations
 - access(v): weights unchanged, only preferredness
 - new root-v-pref. path: $\leq \log n$ light edges
 - deleted pref edges: $\leq \log n$ heavy edges
 - link(v, w): weight of root-w path increases
 - new pref heavy & non-pref light $\Rightarrow O$ changes
 - cut(v): root-v path lightens
 - $\leq \log n$ light pref edges on this path created
 - ≤ 1 heavy pref edge (v.parent, v) deleted

Continuations
- $O(\log n)$ amortization
- $\Omega(\log n)$ worst case
- applications:
 - Dinic in $O(nm \log n)$
 - Dyn. connectivity on general graphs
 - Tango trees