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Abstract Consider a graph G with n vertices. On each vertex we place a
box. The n vertices and n boxes are each numbered from 1 to n, and initially
shuffled according to a permutation π. A single robot is given the task to sort
these boxes. In every step, the robot can walk along an edge of the graph and
can carry at most one box at a time. At a vertex, it may swap the box placed
there with the box it is carrying. How many steps does the robot need to sort
all the boxes?

We present efficient algorithms that construct such a shortest sorting walk
if G is a path or a tree, and we show that the problem is NP-complete for
planar graphs. If we minimize the number of swaps in addition to the number
of walking steps, it is NP-complete even if G is a tree.

Keywords Physical Sorting, Shortest Sorting Walk, Warehouse Reorga-
nization, Robot Scheduling, Robot Transportation Problem, Permutation
Properties, Ensemble Motion Planning

1 Introduction

Motivation. Nowadays, many large warehouses are operated by robots. Such
automated storage and retrieval systems are used in industrial and retail ware-
houses, archives and libraries, as well as in automated car or bicycle parking
systems. When it needs to rearrange the stored goods, such a robot faces a
physical sorting task. In contrast to standard sorting algorithms, it does not
have constant time access to the stored objects. It might need to travel for
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Fig. 1 (left) Initial state of the warehouse with storage locations as circles and boxes as
squares. The box at vertex i is labelled with its target vertex π(i). (centre) The initial state
with π drawn as dashed arcs towards their target vertex instead of numbered boxes. (right)
This shows the state of the warehouse after two steps have been performed. First the robot
brought box 4 to vertex 2. Then it took box 2 to vertex 5. (bottom) A shortest possible
sorting walk consisting of 18 steps.

a significant amount of time before fetching the object in question, and then
moving it to its desired location also takes time. We want to look at the prob-
lem of finding the most efficient route for the robot that allows it to permute
the stored objects.

Our interest in this problem arises from a bike parking system to be built
in Switzerland [35]. At a train station, commuters bring their bicycles in the
morning and reclaim them in the evening. The commuters place their bicycles
in a box at a door of the robotic parking system, where a robot then moves the
box underground for safe storage. At some points in time, the robot should
rearrange these bike boxes according to the expected pickup times of the cus-
tomers. An abstraction of this sorting process is what we want to study in this
paper. We assume that all the boxes are already in storage and no customers
interact with the storage system for the time required for this sorting process.
We generalize the layout of the warehouse from a path to general graphs.

Consider a graph G with n vertices. On each vertex, we place a box. These
n vertices and n boxes are both numbered from 1 to n and initially shuffled
according to a permutation π ∈ Sn. We introduce a sorting problem for a
single robot: In every step, the robot can walk along an edge of G and can
carry at most one box at a time. At a vertex, it may swap the box placed there
with the box it is carrying. How many steps does the robot need to sort all
the boxes?

Example Figure 1 shows an example of a warehouse where G is a tree con-
sisting of 8 vertices. It is not obvious how we can find a shortest walk that
allows the robot to sort these 8 boxes. We will see an efficient algorithm that
produces such a sorting walk and we will prove that this sorting walk has
minimum length.

Organization Section 2 formally defines the problem and introduces some ter-
minology. We then study the problem of minimizing the length of a shortest
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sorting walk in Section 3. In Section 3.1, we show some lower and upper bounds
on general graphs. We then focus on paths in Section 3.2. If the robot starts
at one of the ends of the path, there is a simple and elegant way to compute
a shortest sorting walk in linear time which we demonstrate in Section 3.2.1.
As we show in Section 3.2.4, we can even sort optimally if the robot has only
a constant memory size and has to discover the permutation of the boxes in
an online fashion. In Section 3.2.5, we allow for an arbitrary starting position
of the robot on the path. For this case, we give a quadratic time dynamic
programming construction and then use some observations to improve its run-
time to linear time. Our main result is given in Section 3.3, where we construct
shortest sorting walks on arbitrary trees with arbitrary starting positions in
quadratic time. In Section 3.4, we show that it is NP-complete to find a short-
est sorting walk for planar graphs. In Section 4, we look at the problem of
minimizing the number of box handling interactions as the first priority while
still minimizing the travel time. We show that this sorting problem remains
solvable on path graphs but is NP-complete on tree graphs. Section 5 points
the interested reader to an implementation and visualization of the presented
algorithms that we make available online.

Finally, in Section 6, we give a detailed summary of related work. After
having published our results in [17] and [18], we found out that many of our
findings are independent rediscoveries of results by Frederickson and others.
Therefore, we explicitly compare and contrast their results with ours in order
to guide the reader through the many different settings that were studied
before and to highlight the novelty in our contribution.

2 Problem Description and Notation

We consider the following model throughout this paper. Our warehouse holds
n boxes. Each box is unique in its content but all the boxes have the same
dimensions and can be handled the same way. The storage locations and aisles
of the warehouse are represented by a connected, undirected, unweighted graph
G = (V,E), where n = |V | and m = |E|. Every vertex v ∈ V represents a
location that can hold a single box. Every edge e = (u, v) ∈ E represents a
bidirectional aisle between two locations. We assume that our warehouse is
full, meaning that at each location there is exactly one box stored initially.
The boxes and locations are numbered from 1 to n and are initially shuffled
according to some permutation π ∈ Sn, representing that the box at vertex
i should get moved to vertex π(i). The robot is initially placed at a vertex r
and does not carry a box. In every step, the robot can move along a single
edge. It can carry at most one box with it at any time. When arriving at a
vertex it can either put down the box it was travelling with (if there is no box
at this vertex), pick up the box from the current vertex (if it arrived without
carrying a box), swap the box it was carrying with the box at this vertex (if
there is one) or do nothing.
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We refer to each travelled edge of the robot as a step of the sorting process.
A sequence of steps that lets the robot sort all the boxes according to π and
return to r is called a sorting walk. We measure the length of a sorting walk as
the number of edges that the robot travels along. Therefore, we assume that
all aisles are of equal length and that all of the box-handling actions (pickup,
swap, putdown) only take a negligible amount of time compared to the time
spent travelling along the edges. In Section 3, we look for a shortest sorting
walk. To address the fact that the box-handling actions are not negligible in
practice, we also count the number of times a box is loaded or unloaded onto
the robot. In Section 4, we minimize the number of these box-swapping actions
as the first priority while still minimizing the length of the sorting walk as the
second priority.

Formally, we describe the state τ of the warehouse by a triple (v, b, σ) where
v ∈ V is the current position of the robot, b ∈ {1, . . . , n} ∪ {�} is the number
of the box that the robot is currently travelling with or � if it is travelling
without a box, and σ is the current mapping from vertices to boxes. If there
is no box at some vertex i, we will have σ(i) = �. At any point, there will
always be at most one vertex without a box, thus at most one number will not
appear in {σ(i) | i ∈ {1, . . . , n}}. In other words: Looking at σ and b together
will at all times be a permutation of {1, . . . , n}∪{�}. Given the current state,
the next step s of the robot can be specified by the pair (p, b), if the robot
moves to p ∈ V with box b ∈ {1, . . . , n} ∪ {�}.

We start with τ0 = (r,�, π), so the robot is at the starting position
and is not carrying a box. Applying a step st = (p, b) to a state τt−1 =
(vt−1, bt−1, σt−1) transforms it into the state τt = (vt, bt, σt) with vt = p,
bt = b. σt only differs from σt−1 if a swap was performed, so if bt−1 6= b, in
which case we set σt(vt−1) = bt−1. In order to get σ = id in the end, we let
the robot put its box down whenever it moves into an empty location. Thus
if σt−1(p) = �, we let bt = � and σt(p) = b.

Step st is valid only if (vt−1, p) ∈ E and b ∈ {bt−1, σt−1(vt−1)}, enforcing
that the robot moves along an edge of G and carries either the same box as
before or the box that was located at the previous vertex. Thus after putting
down a box at an empty location, the robot can either immediately pick it up
again or continue without carrying a box. A sequence of steps S = (s1, . . . , sl)
is a sorting walk of length l if we start with τ0, all steps are valid, and we end
in τl = (r,�, id). We are looking for the minimum l such that a sorting walk
of length l exists.

Definition 1 (GraphSort) Given a graph G = (V,E), a starting vertex
r ∈ V , and a permutation π on V , we let GraphSort denote the problem of
finding a shortest sorting walk to sort π on G with the robot starting at r.

We denote the set of cycles of the permutation π by C = {C1, . . . , C|C|},
where each cycle Ci is an ordered list of vertices Ci = (vi,1, . . . , vi,|Ci|) such
that π(vi,j) = vi,j+1 for all j < |Ci| and π(vi,|Ci|) = vi,1. In the example
shown in Figure 1, we have C = {(1, 4), (2), (3, 7, 5), (6, 8)}. As cycles of length
one represent boxes that are placed correctly from the beginning, we usually
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ignore such trivial cycles and let C = {C ∈ C | |C| > 1} be the set of non-trivial
cycles.

Let d(u, v) denote the distance (length of the shortest path) from u to v in
G. So if the robot wants to move a box from vertex u to vertex v, it needs at
least d(u, v) steps for that. By d(C), we denote the sum of distances between
all pairwise neighbours in the cycle C and by d(π) the sum of all such cycle
distances for all cycles in π, i.e., d(π) =

∑
C∈C d(C) =

∑
v∈V d(v, π(v)).

3 Minimizing the Travel Time

3.1 General Bounds

We distinguish two kinds of steps in a sorting walk: essential and non-essential
steps.

Definition 2 (Essential steps) A step s = (p, b) is essential if it brings box
b one step closer to its target position than it was in any of the previous states,
so if d(p, b) is smaller than ever before. We say that such a step is essential for
a cycle C if b ∈ C.

A single step can be essential for at most one cycle, as at most one box is
moved in a step and each box belongs to exactly one cycle. In the example
in Figure 1 for instance, the first step was essential for cycle (1, 4). Overall,
16 steps (all but s2 and s15) were essential. This corresponds to the sum of
distances of all boxes to their targets d(π), which we formalize as follows.

Lemma 1 (Lower bound by counting essential steps)
Every sorting walk for a permutation π on a graph G is of length at least
d(π) =

∑
b∈{1,...,n} d(b, π(b)).

Proof Throughout any sorting walk, there will be exactly d(b, π(b)) essential
steps that move box b. As the robot cannot move more than one box at a time,
the sum of distances between all boxes and their target positions can decrease
by at most 1 in each step. Therefore, there will be d(π) =

∑
b∈{1,...,n} d(b, π(b))

essential steps in every sorting walk and at least as many steps overall. ut

The challenge remaining is to minimize the number of non-essential steps.
In case that π consists only of a single cycle, the shortest solution is easy to
find. We just pick up the box at r and bring it to its target position π(r) in
d(r, π(r)) steps. We continue with the box at π(r), bring it to π(π(r)) and so
on until we return to r and close the cycle. Therefore, by just following this
cycle, the robot can sort these boxes in d(π) steps without any non-essential
steps. As it brings one box one step closer to its target position in every step,
by Lemma 1 no other sorting walk can be shorter.

But what if there is more than one cycle? One idea could be to sort each
cycle individually one after the other. This might not give a shortest possible
sorting walk, but it might give a reasonable upper bound. So the robot picks
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up the box at r, brings it to its target, swaps it there, continues with that box
and repeats this until it closes the cycle. After that, the robot moves to any
vertex v with a box b that is not placed at its correct position yet. These steps
will be non-essential as the robot does not carry a box during these steps from
r to v. Once it arrives at v, it sorts the cycle in which v and b are contained.
In this way, it sorts cycle after cycle and finally returns to r. The number of
non-essential steps in this process depends on the order in which the cycles
are processed and which vertices get picked to start the cycles. The following
lemma shows that a linear amount of non-essential steps will always suffice.

Lemma 2 (Upper bound from traversal) There is a sorting walk of length
at most d(π) + 2 · (n− 1) for a permutation π on a graph G.

Proof We let the robot do a depth-first search traversal of G while not carrying
a box. Whenever we encounter a box that is not placed correctly yet, we sort
its entire cycle. As the robot returns to the same vertex at the end of the cycle,
we can continue the traversal at the place where we interrupted it. Recall that
G is connected, so during the traversal we will visit each vertex at least once
and at the end all boxes will be at their target position. The number of non-
essential steps is now given by the number of steps in the traversal which is
twice the number of edges of the spanning tree produced by the traversal. ut

We can see that these sorting walks might not be optimal, for instance in
the example shown in Figure 1. Every sorting walk that sorts only one cycle at
a time will have length at least 20, while the optimal solution consists of only
18 steps. Hence it might be possible to reduce the number of non-essential
steps by interleaving the sorting of several cycles.

As d(π) can grow quadratically in n, the linear gap between the upper and
lower bound might already be considered negligible. However, for the rest of
this section we want to find sorting walks that are as short as possible.

3.2 Sorting on a Path

We now look at the case where G is a path P = (V,E). The vertices v1 to vn
are ordered on a line from left to right and every vertex is connected to its up
to two neighbours, thus E = {{vi, vi+1} | i ∈ {1, . . . , n− 1}}.

Definition 3 (PathSort) We let PathSort denote the instances of Graph-
Sort where the graph G is a path.

By I(C) = [l(C), r(C)], we denote the interval of P covered by the cycle C,
where l(C) = minvi∈C i and r(C) = maxvi∈C i. We say that two cycles C1 and
C2 intersect if their intervals intersect. Let I = (C, E) be the intersection graph
of the non-trivial cycles, so E = {{C1, C2} | C1, C2 ∈ C s.t. I(C1)∩I(C2) 6= ∅}.
We then use D = {D1, . . . , D|D|} to represent the partition of C into the
connected components of I. Two cycles C1 and C2 are in the same connected
componentDi ∈ D if and only if there exists a sequence of pairwise-intersecting
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cycles that starts with C1 and ends with C2. We let l(D) = minC∈D l(C) and
r(D) = maxC∈D r(C) be the boundary vertices of the connected component
D. We index the cycles and components from left to right according to their
leftmost vertex, so that l(Ci) < l(Cj) and l(Di) < l(Dj) whenever i < j.

3.2.1 Border Starting Position

We will first simplify further and assume that the robot is initially placed at
one of the ends of the path, so let without loss of generality r = v1. Intuitively,
this simplifies the task of the robot as there is no choice between going left or
right for its very first step and its last step.

Definition 4 (BorderPathSort) We let BorderPathSort denote the in-
stances of PathSort where the robot starts at one of the ends of the path.

Theorem 1 (Shortest sorting walk for BorderPathSort) A shortest
sorting walk on a path P with permutation π and starting position r = v1

can be constructed in time Θ(n2) and has length

d(π) + 2 ·


l(D1)− 1 +

|D|−1∑

i=1

(l(Di+1)− r(Di))


 . (1)

Proof What we claim is that the number of non-essential steps that are needed
is twice the number of edges that are not covered by any cycle interval, and
lie between r and the rightmost box that needs to be moved.

We prove the claim by induction on the number of non-trivial cycles of π.
We already saw how we can find a minimum sorting walk if π consists of a
single cycle only. If there are several cycles but only one of them is non-trivial,
so |C| > 1 but |C| = 1, a shortest sorting walk is also easy to find: we walk to
the right until we encounter the leftmost box of this non-trivial cycle C, then
we sort C and return to r. The number of steps is d(π) + 2 · (l(C)− 1) and is
clearly optimal. Figure 2 (left) gives an example of such a case.

Now let us look at the case where π consists of exactly two non-trivial
cycles C1 and C2. If C1 and C2 intersect, we can interleave the sorting of the
two cycles without any non-essential steps. We start sorting C1 until we first
encounter a box that belongs to C2, so until the first step (p, b) where p ∈ C2.
This will happen eventually, as we assumed that C1 and C2 intersect. We then
leave box b at position p in order to sort C2. After sorting C2, we will be
back at position p and can finish sorting C1, continuing with box b. As we
will end in l(C1) and then return to v1, we found a minimum walk of length
d(π) + 2 · (l(C1)− 1). Figure 2 (centre) gives an example of such a case.

Let us assume that C1 and C2 do not intersect. This implies that there
is no box that has to go from the left of r(C1) to the right of l(C2) and vice
versa. But the robot still has to visit the vertices of C2 at some point and
then get back to the starting position. So each of the edges between the two
cycles will be used for at least two non-essential steps. We construct a sorting
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Fig. 2 (left) An example with a single non-trivial cycle. A shortest sorting
walk S with |S| = d(π) + 2 · (l(C1) − 1) = 8 + 2 · (2 − 1) = 10 is
((2,�), (3, 5), (4, 5), (5, 5), (4, 3), (3, 3), (4, 4), (3, 2), (2, 2), (1,�)). (centre) An example with
two intersecting cycles. A shortest sorting walk S with |S| = d(π) = 10 is
((2, 3), (3, 5), (4, 5), (5, 5), (4, 4), (3, 2), (2, 2), (3, 3), (2, 1), (1, 1)). (right) An example with two
non-intersecting cycles. A shortest sorting walk S with |S| = d(π) + 2 · (l(D2) − r(D1)) =
4 + 2 · (4− 2) = 8 is ((2, 2), (3, 1), (4, 1), (5, 5), (4, 4), (3, 1), (2, 1), (1, 1)).

walk that achieves this bound of d(π) + 2 · (l(C1) − 1 + l(C2) − r(C1)). We
start by sorting C1 until we get to r(C1). We then take the box π(r(C1)) from
there and walk with it to l(C2). From there we can sort C2 starting with box
π(l(C2)). We again end at l(C2), where we can pick up box π(r(C1)) again
and take it back to position r(C1). From there, we finish sorting C1 and return
back to v1. Figure 2 (right) gives an example of such a case.

Next, let us assume that we have three or more non-trivial cycles. We
look at these cycles from left to right and we assume that by induction we
already found a minimum sorting walk Si for sorting the boxes of the first
i cycles C1 to Ci. For the next cycle Ci+1 we now distinguish two cases: If
Ci+1 intersects any cycle C∗ ∈ {C1, . . . , Ci} (which does not necessarily need
to be Ci), we can easily insert the essential sorting steps for Ci+1 into Si

at the point where Si first walks onto l(Ci+1) while sorting C∗. As we only
add essential steps, this new walk Si+1 will still be optimal if Si was optimal.
We have |Si+1| = |Si| + d(Ci+1) = |Si| +

∑
b∈Ci+1

d(b, π(b)). In the other
case, Ci does not intersect any of the previous cycles. We then know that
any sorting walk uses all the edges between maxj∈{1,...,i} r(Cj) and l(Ci+1)
for at least two non-essential steps. So if we interrupt Si after the step where
it visits maxj∈{1,...,i} r(Cj) to insert non-essential steps to l(Ci+1), essential
steps to sort Ci+1 and non-essential steps to get back to maxj∈{1,...,i} r(Cj)
we get a minimum walk Si+1. This case occurs whenever Ci+1 lies in another
connected component than all the previous cycles. So if Ci is the first cycle in
some component Dj , we have |Si+1| = |Si|+ d(Ci+1) + 2 · (l(Dj)− r(Dj−1)),
and so we get exactly the extra steps claimed in the theorem. ut

3.2.2 Algorithmic Construction

The proof of Theorem 1 immediately tells us how we can construct a minimum
sorting walk efficiently. Given P and π we first extract the cycles of π and
order them according to their leftmost box, which can easily be done in linear
time. We then build our sorting walk S in the form of a linked list of steps
inductively, starting with an empty walk. While adding cycle after cycle we
keep for every vertex v of P a reference to the earliest step of the current
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walk that arrives at v. We also keep track of the step smax that reaches the
rightmost vertex visited so far.

With these references, the runtime of adding a new cycle to the walk is
linear in the number of steps we add. Overall our construction runs in time
Θ(n+ |S|) ⊆ Θ(n2), so it is linear in the combined size of the input and output
and at most quadratic in the size of the warehouse.

3.2.3 Compact Representation of the Sorting Walk

With a slight change in representation, we can describe also the sorting walks
of quadratic length in linear size and then also find them in linear time. Moving
a box b from u to v takes d(u, v) many consecutive steps that all move the same
box b. We will now represent these steps with a single compact step sc = (b, v),
which represents that the robot takes box b on the shortest path to vertex v.
We denote such a compact representation of S as Sc and let |Sc| denote the
number of compact steps in S. For example, the compact representation of the
18-step sorting walk in Figure 1 only requires 11 compact steps.

Lemma 3 The shortest sorting walk for BorderPathSort from the algo-
rithm in Theorem 1 has a linear-size compact representation, so |Sc| ∈ O(n).

Proof Every non-correctly placed box is picked up exactly once from its initial
position. Its move towards its target position is only interrupted if the sorting
of another cycle has to be started (which happens only once per cycle) or if
a gap between two connected components of cycles has to be bridged (which
happens at most twice per connected component). As the number of boxes
and hence also the number cycles and gaps between connected components is
linear in n, the box placed on the robot only changes O(n) many times and
therefore only O(n) many compact steps are required. ut

Corollary 1 The length and the compact represention of a shortest sorting
walk for BorderPathSort can be computed in time O(n).

Proof All the steps in the proof of Theorem 1, especially keeping track of the
first step that arrives at any vertex and inserting new steps into the current
sorting walk, can be realized in amortized constant time per box when imple-
mented with a compact representation. The length of the sorting walk can then
be computed in linear time from its compact representation or by evaluating
the formula of Theorem 1.

3.2.4 Online Algorithm for BorderPathSort with Constant Memory

Before we move on to other starting positions and other graphs, we want to
answer two more questions about shortest sorting walks on paths with r = v1.

– Does it help to know the entire permutation in advance or not?
– Do we need to precompute the entire sorting walk or can we compute it

on the fly and remember only very little information at any point?
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We show that in both questions the latter is the case. Hence also a robot that
does not know the shuffling up front and can only store a constant number of
box locations is able to sort the permutation almost equally fast.

Definition 5 (Online Sorting on Paths) We say that a sorting algorithm
on a path is working online if it does not know the permutation π up front,
but only learns π(i) once it is at vertex i. We still assume that n, the length
of the path, and r, the starting position, are known to the robot.

Definition 6 (Constant Memory) A sorting algorithm uses constant mem-
ory if the robot at every state of the sorting process remembers only constantly
many integers of size ≤ n. This corresponds to O(1) cells in the word-RAM
model or any amount of information that can be representend with O(log n)
bits. Phrased differently: the robot only distinguishes poly(n) many internal
states.

We will now state an online algorithm that finds the shortest possible
sorting walk that we can hope for. It will only use more non-essential steps
than an offline algorithm if some boxes at the end of the path that is opposite
of the starting position are already sorted. An offline algorithm can just ignore
these presorted boxes, but an online algorithm has to go to the end of the path
to ensure that it does not miss a non-trivial cycle1.

Theorem 2 There is an online algorithm with constant memory who finds a
sorting walk of only 2 · (n− r(D|D|)) more steps than a shortest sorting walk.

Proof Our algorithm works in two phases: a left-to-right phase and a right-
to-left phase. The robot only keeps track of three values: his current position,
the largest box number that it encountered so far and the number of correctly
placed boxes at the right end of the path that it is aware of. As we will see,
this is sufficient and therefore achieves constant memory usage.

In the left-to-right phase, we let the robot walk once from the first to the
last vertex of the path and always carry with it the box with the biggest
number it has seen so far. Intuitively, this connects all the initial components
of cycles which will allow us to easily sort all cycles in the second phase. After
the first phase, the robot is at the right end carrying box n. We claim that
out of the n − 1 steps in this phase, all steps inside a connected component
of cycle intervals were essential. When going to the right, moving the largest
box seen so far is an essential step as long as this box has not passed its target
position yet. But this only happens after the robot has reached the right end
of a connected component of cycle intervals.

In the second phase, the robot will first find box n − 1, put it where it
belongs, find box n − 2, place it correctly and so on. Due to its memory
constraints the robot does not remember where box n− 1 is and needs to be

1 Technically, one could figure out the box on the very last vertex of the path by keeping
track of what we see while walking over the other vertices. If we conclude that π(n) = n,
even an online algorithm would not need to go to this last vertex.
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Fig. 3 Example for the O(1)-memory online algorithm of Theorem 2. The first line shows
the initial permutation π. Five steps of the left-to-right-phase are non-essential: the step
where box 4 is brought to vertex 5, the two steps immediately thereafter and the last two
steps. These last two steps of this phase as well as the first two steps of the right-to-left phase
would have been prevented by our offline algorithm of Theorem 1 as it would have known
without checking that box 9 and box 10 are already placed correctly from the beginning.

careful not to spend unnecessary non-essential steps when walking to the left
to find it. The robot can do this by carrying with it in every step to the left
the smallest possible box available. Once box n− 1 is found, it then takes this
box and moves it to the right to vertex n− 1. This minimum-carrying search
to the left is then repeated for n− 2, n− 3 and so on until the robot returns
to the start with box 1. See Figure 3 for an example.

Why does this strategy not end up with countless non-essential steps?
Clearly, all left-to-right steps in this second phase are essential as they bring
boxes straight to their target position. As long as we never carry a box past its
target, all right-to-left steps in this phase are also bringing one box one step
closer to their target position. As we will see, always carrying the smallest
available box with us ensures that this never happens. Why? Assume other-
wise, so consider the following: While looking for a box x and carrying box y,
we are reaching slot y. If we have not found box x yet and y is the smallest
box encountered so far, we would continue carrying y to left removing it from
its target position. This can only happen if all the boxes at the slots y to x
are larger than y and none of them is box x. But as the only empty slot is slot
1, this is impossible: there are only x− y boxes for these x− y+ 1 many slots.

So all right-to-left steps in this second phase will be essential except for
those that undo a non-essential step from the left-to-right phase. Therefore,
there are equally many non-essential steps in both phases of our algorithm and
the total number of steps is as in Theorem 1 plus an extra 2 · (n− r(D|D|). ut
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Fig. 4 Example of several nested cycles on a path P with a non-border starting position.
Every horizontal segment represents a non-trivial cycle of π with the small circles depicting
its boxes. The robot has to decide multiple times whether to spend non-essential steps to the
left or to the right to extend its current set of connected cycles. The seven dashed lines on
the bottom illustrate a minimal way to connect the cycles. To first reach C7, it is closest to
go to the left until we reach the first box of C7. To get to C5, we can sort C8 along the way
so that only a very short parts (dashed lines 2 and 3) have to be travelled non-essentially.
Next, we can extend again on the left side so that we can exploit C4 and C3 in order to
reach C1, C2 and C9 quickly. Finally, we have to spend some more non-essential steps on
the right to reach C10, C11 and C12.

3.2.5 Non-border Starting Position

So far, we assumed that the robot works on a path and starts at an endpoint of
that path. What if the robot starts at an inner vertex of the path? Even with
this minimal change from BorderPathSort to PathSort, the problem gets
more involved as it is no longer greedily decidable whether the first move of
the robot should go to the left or to the right. In particular, it is no longer
sufficient to use non-essential steps exclusively to bridge connected components
of overlapping cycles. We might now also need non-essential steps within the
components as the robot first needs to reach some box of a cycle that overlaps
with a box of another cycle. Inside a connected component, it now matters
how the cycles are nested and overlap. Figure 4 gives an example of such
nested cycles where the robot has to decide multiple times whether to extend
its connected region to the left or to the right.

In some respect, this section where we still sort on paths is a special case
of our results in Section 3.3 where we will study the problem on trees and
will solve it in quadratic time. For paths, however, we can exploit a special
structure of the shortest sorting walks, which enables us to improve a first
quadratic solution (Lemma 4) to a linear one (Theorem 3).

Lemma 4 (Quadratic Dynamic Programming Approach) We can com-
pute the length of a shortest sorting walk on a path P with permutation π and
arbitrary starting position r in time O(n2) using dynamic programming.

Proof Let I = [a, b] be an interval of the path P containing r that the robot
already explored. We call such an interval self-contained if and only if no cycle
of π partially intersects with I. This means that for any cycle C either all
its boxes are in I or none of its boxes are in I. For example, in Figure 4 the
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done

to do

Fig. 5 Example of a self-contained interval I that splits the set C into cycles within I that
have been done (connected to r) and all others that still need to be connected.

following intervals are self-contained: I(C7), I(C5) and I(C1)∪ I(C2). But on
their own, I(C1) and I(C2) are not self-contained. See Figure 5 for illustration.

We now define the function extend(a, b) which returns for any interval
[a, b] the smallest self-contained interval [a′, b′] with [a, b] ⊆ [a′, b′]. Therefore,
extend(a, b) is the largest part of the path that we can sort without spending
any additional non-essential steps. To compute extend, we have to repeatedly
add all the cycles C that have boxes both inside and outside of [a, b]. So for
any such cycle C, we continue with [a, b] := [a, b] ∪ I(C) until no more cycles
can extend the interval for free.

We start with [a, b] = extend(r, r). Now the fundamental problem re-
mains that we have to somehow decide whether it is cheaper to extend a self-
contained interval to the left or to the right. We could try out both options
and define the following subproblem:

How many non-essential steps do we still need if we already know how
to connect all the cycles in the self-contained interval [a, b]?

This gives rise to a dynamic programming formulation with a state of quadratic
size (all intervals containing r). Let combine(a, b) be the cost function for
connecting all cycles to the interval [a, b]. We can recursively compute it using

combine(a, b) = 2 + min(combine(extend(a− 1, b)),

combine(extend(a, b+ 1))).
(2)

We need to take care of the border cases (when a − 1 or b + 1 are outside
the path) and initialize with combine(a∗, b∗) = 0 for [a∗, b∗] being any interval
that contains all non-trivial cycles and r. By implementing extend carefully
(by lazily only checking if the cycles at a and b extend outside of [a, b]), we
achieve amortized constant time across all its calls so that we compute the
final length d(π) + combine(r, r) in quadratic time overall. ut

Theorem 3 (Shortest sorting walk for PathSort) We can compute the
length and the compact represention of a shortest sorting walk on a path P
with permutation π and arbitrary starting position r in time O(n).

Proof To solve the problem in linear time, we have to observe that we can
decide locally whether to go left or right without exploring quadratically many
states. Imagine that we explored a self-contained interval I and now want to
extend it to the left. Let C be the first non-trivial cycle that we encounter this
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Fig. 6 Distinction between C being I-extending and I-spanning. Note that C cannot have
any box within I as we assume that I is self-contained.
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Fig. 7 Two scenarios where the next I-spanning cycles Cl and Cr to the left and right of
I are either different or the same.
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Fig. 8 Example illustrating the costs cl of extending I to the left to the first I-spanning
cycle Cl and analogously the costs cr to reach Cr.

way. See Figure 6 for an illustration. We now call this cycle either I-extending
if its interval I(C) lies completely to the left of I or I-spanning if it completely
contains I. Note that a partial intersection of I and C is not possible as this
contradicts I’s self-containment.

Let Cl (resp. Cr) be the first I-spanning cycle that we encounter when
walking from I to the left (resp. right). Note that Cl and Cr might or might
not be the same cycle, but if one of them exists, so does the other. See Figure 7
for an example. Let us assume that Cl and Cr exist for our current interval
I. The key insight is now to see that it is optimal to extend I on only one of
the two sides until we reach an I-spanning cycle (either Cl or Cr). So we will
never need to extend on both sides to reach the next spanning cycle. Why?
We know that Cl and Cr overlap (as I ⊆ I(Cl) ∩ I(Cr)), hence once we are
sorting either one of the two cycles, we can also sort the other for free and
extend I to the same self-contained interval extend(I(Cl)∪I(Cr)) at no extra
cost. As non-essential steps on the right side of I do not help us reaching Cl

and vice versa, we can focus on the two sides individually. So all we need to
compute is the number of non-essential steps cl (resp. cr) required to get form
I to a box of Cl (resp. Cr). We greedily take the cheaper of both options and
continue with I ′ = extend(I(Cl)∪ I(Cr)). Figure 8 illustrates these two costs.

The cost cl can be computed as follows. Let vCl
be the first vertex of Cl to

the left of l(I). On the way from l(I) to vCl
, we have to spend non-essential

steps across the edges that are not covered by any I-extending cycle. Let ul
denote the number of these uncovered edges. ul can be computed using a linear
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sweep from l(I) to vCl
in the same way that we compute the gaps between

connected components for BorderPathSort instances in Theorem 1.

We then have cl = 2ul and analogously cr = 2ur. This allows us to speed
up the binary recursion of (2) to the linear recursion

combine(I) = min(cl, cr) + combine(extend(I(Cl) ∪ I(Cr))). (3)

The sweeps to compute all the ul and ur in every step take only linear time
overall as we traverse every edge of P at most once across all the sweeps and
as we can precompute in advance all the necessary lookup values. The sweeps
to compute all the ul and ur in every step take only linear time overall as we
traverse every edge of P at most once across all the sweeps and as we can
precompute in advance all the necessary lookup values.

In the end, once no more I-spanning intervals exist, we might still have to
sort some I-extending cycles on either or both sides (as with C10, C11 and C12

in Figure 4). These are just one or two instances of BorderPathSort. With
the same technique of keeping track of the first step that arrives at any vertex
as in Corollary 1, we can compute both the length of a shortest sorting walk
as well as a compact sorting walk Sc of linear size in linear time. ut

3.3 Sorting on a Tree

We now give our main result, the generalization from paths to trees. Let T =
(V,E) be the underlying tree that the warehouse is based upon, let r ∈ V be
the starting vertex and let T be rooted at r. Recall Figure 1 for an example
of sorting on a tree.

Definition 7 (TreeSort) We let TreeSort denote the instances of Graph-
Sort where the graph G is a tree.

Definition 8 (Cycle hitting and covering vertices) For any cycle C of
π we say that it hits a vertex v if the box initially placed on v belongs to the
cycle C. We denote by V (C) the set of vertices hit by C. We let T (C) denote
the minimum subtree of T that contains all vertices hit by C and we say C
covers v for every v ∈ T (C).

In Figure 1 for example, we have T ((3, 5, 7)) = {1, 2, 3, 5, 6, 7}.
Before describing our solution, we will first derive a lower bound on the

length of any sorting walk on T . We describe how we map each sorting walk to
an auxiliary structure called cycle anchor tree that reflects how the cycles of
π are interleaved in the sorting walk. We then bound the length of the sorting
walk only knowing its cycle anchor tree. We give an explicit construction of a
sorting walk that shows that this bound is tight. In order to find an optimal
solution we first find a cycle anchor tree with the minimum possible bound
and then apply the tight construction to get a shortest possible sorting walk.
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3.3.1 Cycle Anchor Trees

Definition 9 A cycle anchor tree T̃ is a directed, rooted tree that contains
one vertex ṽC for every non-trivial cycle C of π and an extra root vertex r̃.

Given a sorting walk S we construct from it a cycle anchor tree T̃ as follows:
We start with T̃ only containing r̃. We go through the essential steps in S. If
step s is the first essential step for some cycle C, we create a vertex ṽC in T̃ .
To determine the parent node of ṽC in T̃ we look for the last essential step s′

in S before s and its corresponding cycle C ′. We now say that C is anchored
at C ′ and add an edge (ṽC′ , ṽC) to T̃ . If no such step s′ exists (which only
happens for the very first essential step in S) we use the root r̃ as the parent
of ṽC .

We also assign an integer cost to each edge of a cycle anchor tree. For this
we call a sorting step a down-step if the robot moves away from the root and
an up-step otherwise. The cost c for an edge between two nodes of T̃ is now
defined as follows: Let c((ṽC1

, ṽC2
)) be the minimum number of down-steps

on the path from any vertex v ∈ T (C1) to any vertex w ∈ V (C2). Let us fix
one such path that minimizes the number of down-steps and let v and w be
its endpoints. This path, conceptually, consists of two parts: some up-steps
towards the root and then some down-steps away from the root. However,
note that we never walk down and then up again, as this would correspond to
traversing the same edge twice. Let a be the vertex where this path switches
from up-steps to down-steps, also known as the lowest common ancestor of v
and w. We say that a is an anchor vertex for anchoring C2 at C1. For the single
edge incident to the root, we have c((r̃, ṽC)) being the minimum number of

down-steps on the path from the root to any vertex v ∈ V (C). The cost c(T̃ )

of an entire cycle anchor tree T̃ is simply the sum of its edge costs. Figure 9
illustrates the definitions and gives an example of the transformation from a
sorting walk to a weighted cycle anchor tree.

Theorem 4 (Lower bound for trees) Any sorting walk S that sorts a

permutation π on a tree T and corresponds to a cycle anchor tree T̃ has length
at least d(π) + 2 · c(T̃ ).

Proof We partition the steps of S into three sets: essential steps Se, non-
essential down-steps Sn,d and non-essential up-steps Sn,u. From Lemma 1 we

have |Se| = d(π). We argue that S contains at least c(T̃ ) many non-essential
down-steps. To do this we look at the segments of S that were relevant when
we described how we derive T̃ from S. For an edge (ṽC1

, ṽC2
) of T̃ , we look

for the segment SC1,C2
of S between the first essential step s2 of C2 and its

most recent preceding essential step s1 for some other cycle C1. What do we
know about SC1,C2? First of all, we know that s1 is essential for C1, so s1

ends at a vertex covered by C1 and SC1,C2 starts somewhere in T (C1). Next,
s2 is the first essential step that moves a box of C2. Note that some or even
all of the boxes of C2 might have been moved in non-essential steps before s2,
putting them further away from their target position. But as we are on a tree
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Fig. 9 (first figure on the left) The two pairs of dashed arrows symbolize boxes that need
to be swapped. A shortest path from any v ∈ T (C1) to any w ∈ V (C2) is shown with
continuous arrows, three of them being down-steps, so c((ṽC1

, ṽC2
)) = 3. The anchor vertex

a is the vertex immediately before the first down step. Note that c is not symmetric as
c((ṽC2

, ṽC1
)) = 2. (the three figures on the right) An example of a sorting walk on a tree

with three non-trivial cycles. The dashed arrows on the left show the desired shuffling of the
boxes. The dotted arrow in the middle shows a minimum sorting walk of ten steps, where
each step is labelled with the box it moves. On the right, the corresponding cycle anchor
tree is given. The edge from ṽC1

to ṽC3
has cost 1 as there is a down-step necessary to get

from vertex 1 ∈ T (C1) to vertex 3 ∈ V (C3). The edge (ṽC1
, ṽC2

) is free as vertex 2 is both
in T (C1) and V (C2).

(where there is only a single path between any pair of points), the first time
a box gets moved closer to its target position than it was originally is a move
away from its initial position, which means that s2 starts at a vertex hit by
C2. So SC1,C2

ends somewhere in V (C2). By definition of c(ṽC1
, ṽC2

), there are
at least c(ṽC1

, ṽC2
) many down-steps in SC1,C2

. The same holds for the initial
segment Sr,C . As all these segments of the sorting walk are disjoint, we get

that |Sn,d| ≥ c(T̃ ).
Finally we argue that |Sn,d| = |Sn,u| to conclude the proof. Consider any

edge e of T and count all steps of S that go along e. Regardless of whether the
steps are essential or non-essential, we know that there must be equally many
up-steps and down-steps along e, as S is a closed sorting walk and T has no
cycles. So for every time we walk down along an edge, we also have to walk
up along it once. We see that this equality also holds for the essential up-steps
and down-steps along e. Along e there will be as many essential up-steps as
there are boxes in the subtree below e whose target is in the tree above e.
As π is a permutation, there are equally many boxes that are initially placed
above e and have their target in the subtree below e. So as the overall number
of steps match and the essential number of steps match, also the number of
non-essential up-steps and down-steps must be equal along e. As this holds for
any edge e, it also holds for the entire sorting walk. ut

Note that we did not say anything about where these non-essential up-steps
are on S, just that there are as many as there are non-essential down-steps.

3.3.2 Reconstructing a Sorting Walk

We now give a tight construction of a sorting walk of the length of this lower
bound.
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Theorem 5 (Tight construction) Given T , π and cycle anchor tree T̃ , we

can find a sorting walk of length d(π) + 2 · c(T̃ ).

Proof We perform a depth-first search traversal of T̃ , starting at r̃ and itera-
tively insert steps into an initially empty sorting walk S. At any point of the
traversal, S is a closed sorting walk that sorts all the visited cycles of the an-
chor tree. For traversing a new edge of T̃ from ṽC to ṽC′ , we do the following:
Let v ∈ T (C) and w ∈ V (C ′) be the two vertices that have the minimum
number of down-steps between them, as in the definition of the edge weights
of T̃ . Let a denote the anchor vertex on the path from v to w. Furthermore,
let s = (a, b) be the first step of S that ends in a. Note that such a step has
to exist, as a either lies in T (C) or on the path from v to the root and all of
these vertices already have been visited by S if S sorts C. We now build a
sequence SC′ , which consists of three parts: We first take the box b from a to
w, then sort C ′ starting at w and finally bring b back from w to a. SC′ will
contain exactly c(ṽC , ṽC′) down-steps in the first part, then d(C ′) steps to sort
C ′, and finally c(ṽC , ṽC′) up-steps. We insert SC′ into S immediately after s,
making sure that S now also sorts C ′ and is still a valid sorting walk. After
the traversal of all cycles in the anchor tree, S will sort π and be of length
d(π) + 2 · c(T̃ ). ut

Note that the sorting walk S constructed this way does not necessarily
map back to T̃ , but its corresponding cycle anchor tree has the same weight
as T̃ .

3.3.3 Finding a Cheapest Cycle Anchor Tree

Let S∗ denote a shortest sorting walk for T and π. Using Theorem 5 to find
S∗ (or another equally long sorting walk), all we need is its corresponding

cycle anchor tree T̃ ∗. It suffices to find any cycle anchor tree with cost at most
c(T̃ ∗). Especially, it suffices to find a cheapest cycle anchor tree T̃min among
all possible cycle anchor trees. We then use Theorem 5 to get a sorting walk
Smin from T̃min. As c(T̃min) ≤ c(T̃ ∗) we get

|Smin| = d(π) + 2 · c(T̃min) ≤ d(π) + 2 · c(T̃ ∗) ≤ |S∗| (4)

and therefore Smin is a shortest sorting walk. To find this cheapest cycle anchor
tree, we build the complete directed graph G̃ of potential anchor tree edges.
Note that the weights of these edges only depend on T and π but not on a
sorting walk.

Optimum Branching Given this complete weighted directed graph G̃ we find
its minimum directed spanning tree rooted at r̃ using Edmond’s algorithm for
optimum branchings [8]. A great introduction to this algorithm, its correctness
proof by Karp [27] and its efficient implementation by Tarjan [33] can be found
in the lecture notes of Zwick [37]. Combining these results with Theorem 5
will now allow us to find shortest sorting walks in polynomial time, so without
enumerating all possible cycle anchor trees.
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Theorem 6 (Algorithm for TreeSort) We can find a shortest sorting walk
for any tree T with permutation π and starting position r in time O(n2).

Proof We first extract all the cycles in linear time. We then precompute the
weights of all potential cycle anchor tree edges between any pair of cycles or
the root. For this we run breadth-first search (BFS) |C| + 1 times, starting
once with r and once with T (C) for every C ∈ C and count the number of
down-steps along these BFS trees. We also precompute all the anchor points.
As we run O(n) many BFS traversals, this precomputation takes time O(n2).

As an efficient implementation of Edmond’s algorithm allows us to find
T̃min in time O(n2), we can find Smin in time O(n2) time overall. In every step
of the construction in Theorem 5, we can find step s in constant time, if we
keep track of the first step of S visiting each vertex of T . We build S as a
linked list of steps in time linear to its length. Thus we can construct the non-
compact shortest sorting walk Smin in time Θ(n+ |S|) from T̃min. Combining
these three steps gives an algorithm that runs in time O(n2). ut

Note that unlike on the path, the quadratic runtime is not solely caused
by the size of the output. Hence even finding a compact sorting walk takes
quadratic time unless we improve the computation of T̃min,

3.4 Sorting on General Graphs

In this section, we show that our efficient algorithms for paths and trees can
not be easily extended to solve the general GraphSort problem. In fact, no
efficient algorithm for general graphs can be found unless P equals NP.

Theorem 7 (NP-completeness for planar graphs) Finding a shortest
sorting walk for a planar graph G = (V,E) and permutation π is NP-complete.

Proof We show a reduction from the problem of finding Hamiltonian circuits
for grid graphs. This problem was shown to be NP-complete by Itai et al.
in Theorem 2.1 of [23]. The main idea is to replace each vertex of the grid
by a pair of neighbouring vertices with swapped boxes. Given a grid graph
Ĝ = (V̂ , Ê), we build the following input for the sorting problem:

V = {v | ∀v ∈ V̂ } ∪ {v′ | ∀v ∈ V̂ } (5)

E = {(v, v′) | ∀v ∈ V̂ } ∪ Ê (6)

π(v) = v′ ∀v ∈ V̂ and π(v′) = v ∀v ∈ V̂ (7)

We can use any vertex in V as the starting vertex for the robot. An illustration
of this transformation is given in Figure 10.

Let n = |V̂ |. We now claim that Ĝ has a Hamiltonian circuit if and only if
π on G can be sorted in exactly 3n steps. d(π) = 2n, as π contains n pairs of
neighbouring boxes that have been swapped, so any sorting walk will contain
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Fig. 10 (left) An input to the Hamiltonian circuit problem on a grid graph. (right) The
corresponding input to the sorting problem.

exactly 2n essential steps. As all essential steps will move along edges in E \Ê,
only non-essential steps can be used to move from cycle to cycle and so at least
n non-essential steps are needed to complete the sorting walk. If the sorting
walk contains exactly 3n steps, the n non-essential steps will only move along
edges in Ê, visiting all vertices in V̂ and therefore build a Hamiltonian circuit
for Ĝ. So finding a shortest sorting walk is at least as hard as determining
Hamiltonicity of grid graphs. Checking a given sorting walk of length 3n is
easy, so the problem is clearly in NP and therefore NP-complete. The fact
that all grid graphs are planar concludes the proof. ut

4 Minimizing the Box Handling Time

So far, we only minimized the time that the robot spends driving and ignored
the time needed to load boxes onto the robot. In practice, this box handling
time is not negligible. The Bike Loft system [35] that serves as our original
motivitation takes roughly 5 seconds to load or unload a box and can move at
the speed of roughly 3m

s . So especially in small or medium size systems with
only a few dozen or hundred storage slots, this box handling time can have a
significant effect on the overall performance.

Ideally, we would try to minimize a cost function that models the com-
bined handling and driving time. As a step in this direction, we now study
the problem of finding sorting walks with minimal number of box handling
operations. As a second priority, we still minimize the number of steps in
the sorting walk. So among all sorting walks with the minimum number of
box-carrying-changes, we want to find the shortest one.

Definition 10 (Swap count) The swap count 〈S〉 of a sorting walk S de-
notes the number of boxes picked up during the walk. Formally

〈S〉 = |{si = (pi, bi) ∈ S | bi 6= � and (i = 1 or bi−1 6= bi)}|. (8)

Recall that bi = � denotes a step where the robot does not carry a box and so
〈S〉 counts the number of steps where the robot carries a box that is different
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from the one in the step before. Note that this is not exactly the same as the
size of the compact walk Sc. |Sc| also counts compact steps that move no box.

Definition 11 (Swap-optimal sorting walk) A sorting walk S for a per-
mutation π on a graph G that starts and ends at r is called swap-optimal if
among all sorting walks it has minimum swap count 〈S〉 and has minimum
length among all sorting walks with minimum swap count. Formally

〈S〉 is swap-optimal ⇔ @ sorting walk S′ s.t. (〈S′〉 < 〈S〉) or

(〈S′〉 = 〈S〉 and |S′| < |S|).
(9)

We denote the arising swap-optimal sorting problems by GraphSwap-
Sort, BorderPathSwapSort, PathSwapSort and TreeSwapSort.

4.1 Sorting on a Path

Theorem 8 (Efficient solution for BorderPathSwapSort) The length
and the compact represention of a swap-optimal sorting walk on a path P with
r = v1 and permutation π can be computed in time O(n) and has length

d(π) + 2 ·
(

max
C∈C

l(C)− 1

)
. (10)

Proof If we want to minimize the number of swaps, the robot can pick up each
box at most once. This way, the number of swaps will be n− |C|+ |C|, namely
the number of boxes that are not placed correctly from the beginning. This
means that every box has to be brought straight to its target position once it
is loaded onto the robot. Therefore, the robot is forced to sort the permutation
cycle by cycle. Once he loads a box of cycle C, he cannot do anything else
before all boxes in C are sorted.

As we can no longer interleave the sorting of different cycles, as we did
for shortest sorting walks in Theorem 1, the overlap components D are not
relevant here. We just need to reach one box of each cycle as quickly as possible.
The steps to connect the cycles will all be non-essential, no matter in which
order we sort the cycles.

Hence what we are looking for is a minimum connected subgraph P ′ that
contains the starting vertex r and at least one vertex of every non-trivial
cycle. P ′ then represents the non-essential part of the sorting walk. As the
robot starts at the left end of the path, all it has to do is walk to the right
until it encounters the leftmost box of every cycle. On its way back, it can
weave in the sorting of all the cycles.

Since we can find P ′ by checking the leftmost box of all non-trivial cycles
and can connect the O(n) many compact steps of the walk in constant time
per step, the claim follows. ut
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Fig. 11 (left) Example for the subgraph P ′ of non-essential steps for a swap-optimal sorting
walk. C3 is the cycle with its leftmost box furthest to the right. (right) Example where the
robot starts at a non-border position. P ′ = [4, 7] is the only connected subgraph of at most
3 edges that contains the starting vertex 5 and a vertex of every non-trivial cycle.

In contrast to the sorting walks of minimal length, where a non-border
starting position made things significantly more complicated, a swap-optimal
sorting walk can also be found easily if the robot starts anywhere on the path.

Theorem 9 (Efficient solution for PathSwapSort) The length and the
compact represention of a swap-optimal sorting walk on a path P with arbitrary
r and permutation π can be computed in time O(n).

Proof As before, we are looking for a connected r-containing subgraph P ′

that contains at least one vertex of every non-trivial cycle. We can represent
such a subpath P ′ as an interval [a, b] and can compute in linear time using
a single sweep over the path P . We start with [a, b] = [1, r]. As long [a, b]
does not contain a vertex of every non-trivial cycle we increase b. While doing
that we can update in constant time per step which cycles are present in the
current interval. Once we have found a feasible interval we increase a and
repeat as long as a ≤ r and b ≤ n. Throughout this sweep we keep track of
the shortest feasible interval and let that be P ′. P ′ then allows the robot to
reach and sort all the cycles with minimum number of swaps and minimum
number of non-essential steps. Just as in Theorem 8, the robot walks once
non-essentially along P ′ and we interleave this walk with all the non-essential
cycles we encounter along the way. ut

Figure 11 gives two examples of such minimal subgraphs that describe the
non-essential steps in swap-optimal sorting walks.

4.2 Sorting on a Tree

We now look at a tree T = (V,E) as the underlying structure of our warehouse.
As on paths, all we need to find is a connected subgraph T ′ that contains both
the root and a vertex of every non-trivial cycle. But as we will see, this is
already a hard problem. This problem is closely related to the Class Steiner
Tree problem, see Section 6.3 for details. We will show the hardness of our
problem using a reduction from the problem of finding a satisfying assignment
for a formula in 3-conjunctive normal form (3SAT).
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Definition 12 (3SAT) Given a boolean formula F = {C1, . . . , CM} of M
clauses. Each clause consists of exactly three literals Ci = {li1 , li2 , li3} over a
set of N variables x1, . . . , xN and their negations x̄1, . . . , x̄N . Is there a boolean
assignment α: {x1, . . . , xN} → {True,False} that satisfies at least one literal
of every clause?

Theorem 10 (NP-completeness for trees) Finding a swap-optimal sort-
ing walk on a tree T and a permutation π is NP-complete.

Proof We describe a reduction φ that maps every formula F in 3-conjunctive
normal form to a rooted tree T and a permutation π describing an instance of
the problem of finding a swap-optimal sorting walk on a tree.

The main idea is to build a spider graph where each leg represents a literal.
At the end of the xi-leg there is a box labelled x̄i and vice versa, so that the
two endpoints of the xi-leg and the x̄i-leg form a cycle and the robot has to
include at least one of those legs into his subgraph T ′ of non-essential steps.
Along each leg, we have one box per clause and for every clause, we permute
the three boxes on those three legs that correspond to the literals in that
clause. This way, the connected subgraph T ′ needs to contain at least one of
the three literal legs involved in every clause.

For a formal definition, let L = {x1, . . . , xN}∪{x̄1, . . . , x̄N} denote the set
of all literals on N variables. We create a tree T = (V,E) with

V ={r} ∪ {vl,C | l ∈ L and C ∈ F} ∪ {vl | l ∈ L} (11)

E ={(r, vl,C1
| l ∈ L} ∪

{(vl,Ci
, vl,Ci+1

) | l ∈ L, i ∈ [M − 1]} ∪
{(vl,CM

, vl) | l ∈ L}
(12)

and a permutation π ∈ Sn with

π(vl1,Ci
) = vl2,Ci

for Ci = (l1, l2, l3) ∈ F (13)

π(vl2,Ci
) = vl3,Ci

for Ci = (l1, l2, l3) ∈ F (14)

π(vl3,Ci
) = vl1,Ci

for Ci = (l1, l2, l3) ∈ F (15)

π(vl) = vl̄ for l ∈ L (16)

π(v) = v otherwise (17)

We call the cycles of length 3 clause cycles and the cycles of length 2 variable
cycles. An illustration of such an instance is given in Figure 12.

For every variable xi, T
′ needs to contain either vxi

or vx̄i
. Otherwise T ′

would not cover all variable cycles. Therefore, at least N legs of the spider
need to be fully contained in T ′, so |E(T ′)| ≥ N · (M + 1). It remains to show
that this inequality is only tight if F can be satisfied.

Claim F is satisfiable if and only if (T, π) = φ(F ) contains a subtree T ′ that
contains r, reaches all cycles of π and has size |E(T ′)| = N · (M + 1).
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C1
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C3

x1 x2 x3 x4x̄1 x̄2 x̄3 x̄4

r

Fig. 12 Illustration of the spider T and permutation π generated for the formula F =
{{x̄1, x2, x̄4}, {x̄2, x3, x4}, {x1, x2, x̄3}}, N = 4, M = 3. The grey vertices mark the boxes
that need to be moved for the three clause cycles and four variable cycles. The four legs
printed in bold build the subtree T ′ that corresponds to the satisfying assignment α =
(x1, x̄2, x̄3, x̄4).

⇒: Given a satisfying assignment α, we let T ′ be the tree of the N legs that
correspond to literals which evaluate to true under α. Clearly all variable cycles
are covered this way. Since every clause needs to have at least one satisfied
literal under α, also all clause cycles are covered this way.

⇐: The variable cycles enforce that whenever we have |E(T ′)| = N ·(M+1),
we know that T ′ consists of N complete legs and no partial legs of the spider.
As exactly one leg per variable has to be in T ′ (either (r, vxi

) or (r, vx̄i
)) we

can read off an assignment α with α(xi) = true if and only if the (r, vxi
)-leg

is in T ′. As T ′ covers all clause cycles, F is satisfied by α. ut

In conclusion, the sorting problem TreeSwapSort and hence also the
general GraphSwapSort are NP-complete.

5 Implementation and Visualization

We provide implementations of all our algorithmic results on our website:
http://dgraf.ch/treeswapsort. This includes the algorithms from Theo-
rems 1, 3 and 6 to determine the length and compact representation of a
shortest sorting walk for BorderPathSort, PathSort and for TreeSort.
For trees, we compute the optimum branching using Edmond’s algorithm [8]
to find a cheapest cycle anchor tree and generate a corresponding sorting walk
as in Theorem 6.

The implementation also includes the algorithms from Theorems 8 and 9
for swap-optimal sorting walks for BorderPathSwapSort and PathSwap-
Sort.

http://dgraf.ch/treeswapsort
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A text-based visualization allows the animation of the resulting sorting
walks and can be used to perform the sorting steps interactively. The web-
page further contains a few stop motion video animations that illustrate the
sorting process on small examples as well as a detailed usage tutorial of the
implementation.

6 Related Work and Discussion

Efficient algorithms for sorting physical objects were studied in countless dif-
ferent models. We want to survey those that are most relevant to our results
in this section. These models have been studied under various names, so find-
ing and comparing the different settings and results is not an easy task. In
Section 6.1, we list related work that uses solution techniques that are most
similar to ours. Section 6.2 lists models that are still very close in spirit to our
setting, but do not share the same solution techniques. Lastly, in Section 6.3,
we refer to some work related to our two hardness proofs (Theorem 7 and 10).

6.1 Closely related Problems

We start by listing the problems with similar solution techniques in chrono-
logical order. We stumbled upon the cited articles in this section only after
having written up and published our results in [17] and [18]. Thus, some of
our results are independent rediscoveries of approaches found in the 1970s and
1980s. We will highlight the key similarities and differences and argue that the
value of our results is that our algorithms are often significantly simpler to
describe, analyze and implement.

6.1.1 Elevator Problem, Bus Problem (1972)

In his volume on Searching and Sorting [29] in section 5.4.8, D. E. Knuth dis-
cusses one-tape sorting. He cites the thesis of H. B. Demuth [7] to first show
that a quadratic number of steps are needed if one can only operate on and
move by a bounded part of the tape in every step. This corresponds to an
asymptotic version of our lower bound in Lemma 1.

Knuth reformulates one-tape sorting as an elevator problem: “What is the
fastest way to transport people between floors using a single elevator?”. He
then refers to R. M. Karp’s article [26] which gives an optimum algorithm
for it. Karp’s setting corresponds to our BorderPathSort problem as his
elevator/robot also starts on the bottom floor. In his setting, the robot can
carry c boxes at a time and there are exactly b boxes departing and arriving at
every vertex, for two constants b and c. So his input is not a single permutation
but b permutations. Karp further assumes that all edges of the path are covered
by at least one cycle and then presents an algorithm. He does not give a
formal proof but the full proof is presented in Knuth’s book [29]. While our
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algorithm in Theorem 2 in some sense only solves the (b = 1, c = 1)-case
of Karp’s setting, our algorithm sorts in a slightly different way and hence
it only requires constant memory (Karp’s algorithm stores a linear amount),
can handle gaps between the connected components of cycle intervals and also
works in an online fashion.

The generalization to where the elevator does not start and end at the
bottom floor (our PathSort solved in Theorem 3) is not discussed. However,
Knuth gives the generalization to tree graphs as an exercise, which he also
attributes to Karp. The elevator is then called a bus that travels through
the tree and the exercise is labeled as [M40] (suitable for a term project).
According to Frederickson and Guan [13], neither Knuth nor Karp knew an
efficient solution to this problem and Frederickson and Guan later showed that
this problem (with a robot capacity greater than one) is NP-complete [11,19].

6.1.2 Stacker Crane Problem (1978)

Frederickson, Hecht and Kim presented in [14] the stacker-crane problem which
they attribute to D. J. Rosenkrantz. Phrased as a modified traveling salesman
problem, this stacker-crane problem is roughly a generalization of our problem.
The basics are the same, one unit-capacity robot travels along the edges of any
given graph. They require that all the boxes are brought straight to their target
without any intermediate drops (similar to our swap-minimal setting), they
consider weighted graphs and they do not impose a limit on the number of
boxes that are placed at each vertex (neither initially, finally, nor during the
process). So instead of a permutation π, they get an arbitrary set of arcs on
the graph that describe the desired shuffling of the boxes.

They show NP-completeness using a reduction from TSP, with a con-
struction that is different from the ones we presented for our more narrowly
defined problems in our hardness proofs (Theorem 7 and 10), and they also
give a 9

5 -approximation.

6.1.3 Robot Arm Travel (1987)

Atallah and Kosaraju studied the stacker-crane problem for a robot arm that
can extend like a telescope and rotate around a fixed pivot point [1]. As it is
NP-hard for the combination of both motions, they look at the two cases where
only one of the motions is allowed, so for extend-only (which corresponds to a
path graph) and for rotate-only (which corresponds to a cycle graph). For both
cases, they look at the situation with and without preemption (dropping a box
before bringing it to its target), which is very similar to how we distinguish
between shortest and swap-optimal sorting walks.

Their algorithm on cycles with preemption runs in linear time and can
also be applied to paths. Hence their results are asymptotically equivalent
to what we show in Theorem 3. However, their approach needs several non-
trivial insights which is why we think that our linear solution to PathSort
is significantly easier both to understand and implement. There are also two
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small differences between their problem and our Pathsort. The first one is
that our vertices have a capacity constraint2 and can only hold one box at any
time, while their problem does not have such a constraint. This does not make
our problem much more difficult as long as we just minimize the travel time.
The only effect is that, unlike in this robot arm setting, our algorithm might
need to move a box past its target position and bring it back later, e.g., when
linking cycles as in Theorem 1. But this never causes us to make any extra
steps and we could always just leave such boxes at their target position if there
was no vertex capacity. The second difference is that the desired box-shuffling
in the robot arm problem is not bound to be a permutation but allows for a
general digraph on V as box-moving-requests. We will show in Section 6.1.5
how we can easily bring any such set of requests into our permutation form.
So while having a permutation in our sorting setting is not really a restriction
from a theoretical perspective, we think that it significantly simplifies the
presentation of our results.

For the non-preemptive setting, where the boxes have to be brought straight
to their target, the results do not match ours as closely as in the preemptive
setting. For our swap-optimal sorting walks on paths (Theorem 9) we have to
sort cycle by cycle of π and cannot sort only parts of the cycle and then move
other boxes before finishing it due to the vertex capacity of one. Therefore, the
way the cycles can be linked in this non-preemptive setting is different than in
ours and so while we can do it in linear time in our setting, the non-preemptive
robot arm problem needs time O(nα(n)) on paths and O(n log n) on cycles
as some minimum spanning trees have to be computed. Frederickson [10] im-
proved the algorithm on cylces to also run in O(nα(n)) and formalized the
tight relations to the minimum spanning tree problem.

6.1.4 Ensemble Motion Planning on Trees (1989)

Frederickson and Guan picked up Knuth’s and Karp’s exercise of a bus trav-
eling through a tree-shaped network and study it for a bus of capacity one.
This corresponds to the stacker crane and robot arm problem on a tree graph.
They introduce yet another name for this problem: ensemble motion planning.
Their main results [11] are split into two cases, the non-preemptive case [13]
and the preemptive case [12].

In the preemptive case, they show NP-hardness of the problem and give
several approximation algorithms. The hardness construction in [12] reduces
from the Steiner Tree Problem on bipartite graphs and is more involved than
ours. Our hardness reduction for TreeSwapSort in Theorem 10 shows hard-
ness for a more narrowly defined problem (on an unweighted graph with a
single permutation) using a simple construction directly from 3SAT. The re-
lated Group Steiner Tree problem is discussed in Section 6.3

In the non-preemptive setting, Frederickson and Guan present an algorithm
for the equivalent of Treesort that runs in quadratic time in Section 3.2

2 The elevator problem by Karp also has this constraint.
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of [12]. The basic ideas are exactly the same as in our quadratic algorithm in
Theorem 6. After some initial balancing, a directed bridging graph is computed,
which is the complete directed graph G̃ of potential bridging edges with the
same edge cost function that we use. Then, the directed minimum spanning
tree of that graph (equivalent to our cycle anchor tree), is a witness on how
to optimally link/bridge the cycles. In our setting of the box-shuffling being a
permutation, the steps are again a bit shorter and easier to digest. In Section 4
of the paper however, Frederickson and Guan exploit some structure of these
bridging graphs and are able to improve the runtime to O(n log n). This is
asymptotically strictly better than our quadratic result but comes at the prize
of being very involved to understand and implement.

6.1.5 Reduction from the stacker crane setting to our permutation setting

An obvious difference between the stacker-crane-like settings (including robot
arm travel and ensemble motion planning) and ours is that the stacker crane
problem allows an aribtrary set of start and endpoints for the boxes while
we are constraining our box-requests to form a permutation graph, which
goes back to our original sorting motivation. We argue that this restriction
to permutations does not simplify the asymptotical complexity of the task
because we can easily transform a general set of box-requests into an equivalent
one that forms a permutation – at least on paths and trees where there is
always a unique path between any two vertices.

To that end, we first note that all our results easily extend to weighted
graphs where each edge has an individual travel time. We then refer to Fig-
ure 13 to sketch how we use the degree-balancing arguments from [1] and [11]
and a subsequent vertex-splitting-by-degree step to get an equivalent sorting
problem on permutations.

6.2 Other Physical Sorting Algorithms

We now present further interesting models of sorting phyiscal items that are
phrased very similar to our problem but significantly differ in their solutions.
They all have in common that they play around with the constant time random
read and write access that is crucial for many classical sorting algorithms. We
can distinguish these physical sorting algorithms by the type of operation that
they can perform and the kind of additional resources they have.

For instance, sorting a permutation by repeatedly reversing parts of it was
studied in various flavours. The restricted version by Gates and Papadimitriou
[15], where only prefixes of the permutation can be flipped, is motivated by
the problem of sorting a pile of pancakes using a spatula. Bulteau et al. [4]
recently showed that it is NP-hard to find a shortest possible sequence of
such prefix reversals that sorts a given permutation. Kaplan et al. [25] studied
the extension to signed permutations, where each operation reverses a part
of the permutation and also flips the sign of that part. One application is in
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Fig. 13 Sketch of the reduction from an arbitrary set of boxes as in the stacker crane
problem (left) to a balanced set that forms a permutation as in our setting (right). The
solid lines mark the edges of the path (top row) and tree (bottom row). The solid arrows
mark the requested moves. Our transformation now works in two steps. First, we add the
unique minimal set of single-edge boxes such that along each edge of the graph the same
number of boxes have to travel the two directions (middle). This we depict with the dashed
arcs above and corresponds to the degree-balancing in [1] and [11]. In the second step,
we split up all the vertices with more than one incoming/outgoing box (the ones printed
in gray). We connect these copies with zero-cost edges and distribute the incoming and
outgoing boxes of the former vertex to the new copies in such a way that every vertex has
box-in/outdegree at most one afterwards. If there are any vertices left without boxes (in the
example the vertex at the right end of the path), we add a single correctly-placed box on
those vertices in order to end with an equivalent permutation-sorting problem.

computational biology where the reversal distance between two chromosomes
can measure their evolutionary distance.

Bender et al. [2] proposed a method called library sort. It is based on the
idea that if a librarian would put all her books into a long shelf in alphabetic
order, she would not squish them all at the beginning of the shelf but spread
them out evenly, leaving an empty spot here and there. This way, a new
acquisition that has to go into the middle of the shelf only requires a few
books to be moved and not half of them. The goal of this variation of insertion
sort is to keep gaps between the array entries in order to prevent frequent
expensive moves when adding new books to the library.

Another way one could sort physical items is by a process Elizalde and
Winkler called homing [9]. If you know the final order of the objects, a homing
operation is the following: take one object and place it at its final position while
shifting the other objects by one position as necessary. They show that for any
sequence of homing steps the permutation eventually becomes sorted but it
can take exponentially many steps in the worst case. It is easy to see though
that it is possible to sort any permutation in n − 1 homing steps by homing
the objects from left to right in their final order.

Sorting streams of objects was studied for instance by Knuth (Section 2.2 in
[28]) where we can use an additional stack to buffer objects for rearrangement.
These results were later generalized for sorting permutations with a sequence
or entire network of stacks and queues, first by Tarjan [32] and then by many
others. We refer to Bóna for a survey [3]. A typical area for applications and
extensions of these algorithms is the design of efficient railway switchyards.
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There railway cars need to be sorted with as few shunting steps as possible.
Gatto et al. [16] give a nice introduction into this topic of shunting.

An algorithm with the goal of minimizing the number of writes when sort-
ing an array is called cycle sort by Haddon [20]. It works by fixing one cycle
of the permutation after the other, the same way we sort the boxes on a path
when minimizing the box handling time.

The more general problem of sorting n objects on a graph of n vertices
using as few swaps of objects on neighbouring vertices as possible was studied
for various graphs in the past.

– For complete graphs, which allow to swap any pair of objects, this corre-
sponds to the setting of cycle sort and was already known by Cayley in
1849 [5].

– For path graphs, which allow adjacent transpositions, the shortest sequence
of swaps can be generated by bubble sort and the number of swaps needed is
the inversion number of the permutation, as shown by Knuth (Section 5.2.2
in [29]).

– Jerrum [24] gives a solution for the case where the underlying graph is a
cycle, so also the first and the last element can be swapped. This turned
out to be substantially more complicated than on the path and required
solving an integer program.

– Yamanaka et al. [36] studied this problem on trees. By simulating cycle
sort, they achieve a 2-approximation.

– Miltzow et al. [30] investigated the complexity for general graphs showing
APX-hardness and giving a 4-approximation.

Compared to our setting, these models do not require that successive swaps
are applied to nearby vertices and hence do not have to care about the non-
essential steps between objects that need to be moved, like we do. We could
view this as a robot that is able to teleport whenever it is not carrying a box.

Sliding tokens on graphs were also studied by Demaine et al. [6] in a context
not related to sorting. In their model, the tokens form an independent set
and we want to decide whether it is possible to transform one independent
set into another independent set by sliding one token at a time so that all
intermediate states form independent sets as well. For planar graphs, this
problem is PSPACE-complete, but they give an efficient algorithm for trees.

Sliding physical objects also appear in many popular puzzle games like the
Dad’s puzzle, the 15 puzzle or the board games Rush Hour or Ricochet Robots.
They were studied in the context of their computational complexity and a lot of
them have been proven to be PSPACE-complete. We refer to Hearn [21] for an
overview. It is also a popular topic at competitive programming competitions
(see Sections 3.4.3 and 3.4.4 of [18] for a discussion of two recent examples).

6.3 Hard Problems for Travelling on Graphs

Our hardness proof for finding shortest sorting walks on planar graphs (The-
orem 7) is based on the proof by Itai et al. [23] that showed that the Hamil-
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tonian path problem and Hamiltonian circuit problem on grid graphs are NP-
complete. It is interesting to note that the hardness requires the fact that these
grid graphs can contain holes. Umans [34] showed that finding Hamiltonian
cycles on grid graphs without holes is in P.

When minimizing the box handling time, we faced the problem of finding
a minimal connected subgraph that contains at least one vertex for every non-
trivial cycle. Since the order of the boxes inside each non-trivial cycle does not
matter for our search of the swap-optimal sorting walk, we can abstract this
to the following problem: we are given a family of subsets of vertices and we
want the smallest connected subgraph that contains at least one vertex from
every set of vertices. This problem is known as the Class Steiner Tree or
Group Steiner Tree problem3. This problem was first introduced by Reich
and Widmayer [31]. It is in P if the underlying graph is a path, which we even
solved in linear time in Theorem 8. The NP-completeness for the case where
the graph is restricted to a tree was shown by Ihler et al. [22]. Like we do
in Theorem 10, they also used a reduction from 3SAT but their construction
is different than ours as their graph model allows weighted edges, specifically
zero-weight edges.

7 Conclusion

In this paper, we studied a sorting problem on graphs with the simple cost
model of counting the number of edges traveled. We presented several asymp-
totically tight, linear-time algorithms that find optimum solutions if the graph
is a path. Our extension to trees runs in quadratic time. For an extended cost
function that minimizes the number of objects loaded, we gave linear time
algorithms for paths and showed that it is already NP-complete on trees.

An interesting open problem is whether sorting on trees can also be done
in linear time. For many classes of graphs like ladder graphs, wheel graphs and
hypercubes, the complexity is still open and it would be interesting to have
better approximation algorithms for the hard instances.
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