ETHzurich
Digraph Reachability Algorithms

Doctoral Examination Daniel Wolleb-Grat December 3, 2018

<

Introduction

Object of study: directed graphs

Static vs. dynamic: !
Do the arcs change over time?

Reachability question!

Is there a path from u to Vv?

k-reachability question!
How many arc-disjoint paths from u to V?

My contributions

1) Fully dynamic reachability for graphs of partial functions

e special class of graphs e simple bookkeeping data structure

2) All-Pairs 2-Reachability in O(n' logn) time

e any graph e encoding for DAGs e auxiliary graph for SC

3) All-Pairs k-Reachability on DAGs in O(n! o)) for small k

e DAGs only e structure of cuts e a lot of encoding tricks

My contributions

1) Fully dynamic reachability for graphs of partial functions

joint work with Timon Gehr

Compiler Motivation: Semantic Analysis

Are all variables in the code well-defined? enum x = 3;

e compile-time code evaluation makes it tricky ~ struct S {

e AST nodes and dependencies vary over time enumy = Xx;

e node evaluation might be blocked by at most mixin(z),

one other node ! detect cyclic dependencies mixin(foo(y));

enum y = X;
\

enum x = 3; T mixin(z);

mixin(foo(y)); ol

Graphs of Partial Functions

Each vertex has at most one out-neighbour

1

e graph = cycles + trees hanging 0" of them

o\
‘

@

Dynamic Graphs of Partial Functions

Book keeping: remember arc that closed the cycle separately

e rest = rooted forests to be stored in link-cut trees
[Sleator, Tarjan, A data structure for dynamic treesJCSS, 1983]

Dynamic Graphs of Partial Functions

Result Dynamic U-V-reachability Algorithm 8 Query (u, v)

. If D’.Root (u) # D’.Root (v) then
return false

end If

if D'.LCA (u,v) = v then
return true

end If

r <+ D’ .Root (u)

If Ac.Find (z) = false then
return false

end If

(x,y) + Ac.FInd (x)

if D'.LCA (v,y) = v then
return true

else

return false
end If

e O(log Q using link-cut trees & LCA

My contributions

2) All-Pairs 2-Reachability in O(n' logn)

joint work with Loukas Georgiadis, Giuseppe F. ltaliano,
Nikos Parotsidis, and Przemysthw Uzna$ski, ICALP 2017

Our Problem: All-Pairs 2-Reachability

Given: directed graph G = (V, A) |
with N vertices, M arcs

For all XY 9 decide if

‘ many arc-disjoint U-V-paths
O some arc a on every U-V-path
‘ no U-V-path at all

Goal: prepare for constant query time

Improving 2-Reachability

[Alstrup, Harel, Lauridsen, Thorup 1990] non-trivial combinatorics, dominator trees
Previously fastest: single source in O(m), all pairs in O(n- m) C O(n’)

All-pairs 2-reachability with witnesses in [ROIQ®2(els ¢

|Georgiadis, Graf, Italiano, Parotsidis, Uzna%ski, ICALP 2018] w < 2.373

Algorithm: acyclic + strongly connected + combine

Dynamic Programming

| no U-V-path!
State: L[u,v] = < a first common arc of all u-v-paths!
T multiple disjoint U-V-paths

L{u,p]

Divide & Conquer / Arc Spit /e

Arc split: A=A;[*JA, once you leave A1, you can never go back

Divide & Conquer

Path families:
Example:
(D! D)
"(D! D)
(D!#)
=($, D)
=D

Extend DP-cases to: $ QWX Y=1 (/[XZ! §2ZY)

arc splits

C

combine C, D!
combine B, CD

serial paths
ax® l=1
a®T=a

a®a =aor ad

parallel paths

1 & a=a
T&&a=T
a®a =T

simulate ®, ® with A,V

{L, T}UA - {0, 1}@(10g ")

1—-0...00...0
1

1...1

dy — 1---1‘ba2ba2|\ overall:

allows 0, 1, 2+ counting O(n”)

2-Reachability
All-pairs 2-reachability with witnesses in [ROIQ®X(els N¢

|Georgiadis, Graf, Italiano, Parotsidis, Uzna$ski, ICALP 2018]

Algorithm: acyclic + strongly connected + combine

Strongly Connected

Testing 2-reachability after breaking symmetry

& .
R(s,V]
A 2

Ny

Vv

y
.----"

It some a disconnects U from Vv, then so does a, or av.

Strongly Connected Asymmetric
It some a disconnects U from Vv, then so does a, or av.

— o N

[[u,s] Consider: G\ay and Gay

Proof:

_/

cu

N

~.__-’_¢ a/

If a disconnects U from Vv, then a also disconnects U from S or S from V.
If a disconnects U from S, ay also lies on all u-a-paths and also all u-v-paths.

Strongly Connected / Auxiliary Graphs

u-v-path in G\a, and

u-v-path in G\ay ?

Algorithm:
e build two auxiliary graphs in O(Q)
e take transitive closure in O(Q)

e answer queries in O()

2-Reachability
All-pairs 2-reachability with witnesses in [ROIQ®X(els N¢

|Georgiadis, Graf, Italiano, Parotsidis, Uzna$ski, ICALP 2018]

Algorithm: acyclic + strongly connected + combine

First: compute SCCs and any topological order in O(QG+ P)
0

CCOHOConOC HOC D

Is there a giant in the middle?
e Yes: /(Q! -+ mm O(Qlog § BBLIIGETIIS
e No: T(n) <((2n/3)+(T(n/3) O(n“logn) RRSIQOACIRC

recursive! giant! merge!
parts SCC arc splits

My contributions

3) All-Pairs k-Reachability on DAGs in O(n'! o)) for small k

joint work with Loukas Georgiadis, Giuseppe F. ltaliano,
Nikos Parotsidis, and Przemystaw Uzna$ski

All-Pairs k-Reachability

Problem: bounded Min-Cut-Size with Witnhesses

for all sand t, find all s-t-earliest and st-latest " k-cuts 5'\/€ = f,{

all earlier cuts are larger -j all later cuts are Iargerj tcuts with at most K arcs

Example: Mi{M> M3 My

.A
o
-
L
w’

report M1 as St-earliest 2-cut

report VI3 as S-t-latest Z2-cut
report M as St-latest 3-cut

do not report M (not S-t-earliest/latest)

Structure of Cuts

Useful properties

e Earliest and latest min-cuts are unique!
[Ford, Fulkerson 1962] (proof by residual graph of max flow)

o E\y,IF " 4k!

[Cygan et al. 2015] (proof by arc replacement process)

First Idea: Combining Min-Cuts

This does not work:
e Looking only at pairs of min-cuts

s-t-min-cuts are not contained in any
union of two s-v-, v-t-, s-w-, w-t-min-cuts

Working ldea: Combining " k-Cuts

This does work:

e For one St-min-cut M and every v,!
M contains an S-V-earliest or a V-t-latest cut

some s-t-min-cut contains |
s-v-earliest and v-t-latest cuts for all v

Abstract Problem

many s-t-cuts, !

Witness Superset Problem

including one s-t-min-cut

e Cset familiesF F ,... F e all witnesses W of size!l: Il |
OWithFL:{)L,)L,...,)L_} e with! L : ! 1 st. : I F
e with)i 8and!) ! | L e no subset of W has this property

t- corresponds to one cut family of all K s-v-earliest and v-t-latest " k-cuts, K=0O(4)

Example: F =w ;.1 B.F =W, 1 n.F =00 Ll i
for k=2, W={2,4} is the only witness

Algorithm 1: One-by-one

Process vertices one-by-one in reverse topological order:

For vi and v look at:

{(Viv Vik)} U f\fkv-

Icr V)

Instance of Witness Superset

After some filtering, gives J’:'\@N\r in time O(c- 20(/‘2))

For all vi, vi: time O(mn- ®*)) = O(P Q")) fork = o(\/IOgn)

Algorithm 2: Divide-and-Conquer

Process first halt and second half of topological order recursively:

For vi and v look at:

'N

'N

[
S FY.;YM

Instance of Witness Superset

Bottleneck is building the N2 Witness Superset instances using encodings

Overall: time O(Q!(Nog @ =)=0(Q" ®)) for N= Rloglog Q

Encoding for Witness Superset

Encode the set)| into a K-superimposed ! ci{2)y O0000

codeword ({)) of size O(S Ri®llog @) C({1,5}) ‘@Q@Q
Encode the family F as the tensor product! C® ({2}, ¥1{5M)

C (FL=CO)u)! COL) " Q)L).
QOO

Encode the set of families 1. F>, ..., F.as !
the union C®(.7E1) U C®(.7E2) U .. C®(fc)

{. OR in the fast matrix multiplication

f— AND in the fast matrix multiplication
If we set Fy = EF U]—"ik we get an encoding of

Vi, Ve Ve,V

the witness superset problem we want to solve.

Conclusion

1) Fully dynamic reachability for graphs of partial functions

e special class of graphs e simple bookkeeping data structure

2) All-Pairs 2-Reachability in O(n' logn)

e any graph e encoding for DAGs e auxiliary graph for SC

3) All-Pairs k-Reachability on DAGs in O(n! o)) for small k

e DAGs only e structure of cuts e a lot of encoding tricks

